Г. С. ГАБАЯН, С. Ш. НУРИДЖАЯН, В. С. САРКИСЯН

НЕСТАЦИОНАРНАЯ ФИЛЬТРАЦИЯ ИЗ ВОДОХРАНИЛИЩ И КАНАЛОВ В ПОЛУОГРАНИЧЕННУЮ ОБЛАСТЬ

Фильтрация из водохранилищ и каналов вызывает подпор уровня грунтовых вод, возникает угроза засоления и заболачивания обширных территорий. Это в свою очередь приводит в негодность огромные площади сельскохозяйственных угодий, вызывает осадки фундаментов сооружений, способствует возникновению оползневых явлений и т. д. Поэтому для правильного прогноза и эффективной борьбы с подобными явлениями, необходимо постоянное совершенствование теории и методов фильтрационных расчетов.

Работа приточного водохранилищ носят сезонный характер. Учет его особенно важен для водохранилищ, построенных в горной местности. Задача нестационарной фильтрации рассмотрена в [1] при мгновенном и линейном законах подъема и сработки уровня воды, а в [2, 3] учитывает влияние на процесс фильтрации последовательных циклов наполнений и сработок водохранилища.

Рассмотрим задачу фильтрации воды из водохранилища в полуограниченную область при колебании уровня воды в нем по закону:

$$ h(t) = A_1 + A_2 \cos (2\pi t); \quad A_1 = 0.5 (h_1 + h_2); \quad A_2 = 0.5 (h_2 - h_1). \quad (1) $$

Здесь h_1 и h_2 — соответственно максимальная и минимальная глубины воды в водохранилище (канале); $t = t/T$; T — период одного полного цикла колебания уровня воды в водохранилище; t — время.

Зависимость (1) получена на основе анализа большого количества данных натурных наблюдений за уровнями водохранилищ.

Для прогноза режима фильтрации используем уравнение

$$ \frac{\partial h}{\partial x} = a T \frac{\partial^2 h}{\partial x^2}, \quad (2) $$

где h — глубина грунтового потока на расстоянии x от уреза воды в водохранилище в момент времени t; a — уровень проходности.

Краевые условия поставленной задачи записываются в виде

$$ h(x, 0) = h_0, \quad h(0, t) = A_1 + A_2 \cos (2\pi t) = \varphi(t), \quad h(\infty, t) = \infty, \quad (3) $$

где h_0 — уровень грунтовых вод при $t = 0$.
Для решения задачи представим \(h(x, \tau) \) в виде суммы двух функций \(h(x, \tau) = v(x, \tau) + w(x, \tau) \), где функции \(v(x, \tau) \) и \(w(x, \tau) \) удовлетворяют уравнениям

\[
\frac{\partial v}{\partial \tau} = aT \frac{\partial^2 v}{\partial x^2},
\]

\[
\frac{\partial w}{\partial \tau} = aT \frac{\partial^2 w}{\partial x^2},
\]

при краевых условиях

\[
v(x, 0) = h_0, \quad v(0, \tau) = 0,
\]

\[
w(x, 0) = 0, \quad w(0, \tau) = \psi(\tau).
\]

Решения уравнений (4) и (5) при краевых условиях (6) и (7) записываются в виде:

\[
v(x, \tau) = h_0 \Phi(\lambda);
\]

\[
w(x, \tau) = \frac{2}{V\pi} \int_0^\lambda \varphi \left(\tau - \frac{x^2}{4aT\mu^2} \right) \exp\left(-\mu^2\right) d\mu,
\]

где

\[
\lambda = \frac{x}{2V\alpha T}; \quad \Phi(\lambda) = \frac{2}{V\pi} \int_0^\lambda \exp\left(-\tau^2\right) d\tau.
\]

Подставляя (3) в (9), после преобразований получаем выражение для \(h(x, \tau) \):

\[
h(x, \tau) = A_1 + (h_0 - A_1) \Phi(\lambda) + A_2 \cos(2\pi \tau - \bar{x}) \exp(-\bar{x}) - \psi,
\]

где

\[
\psi = \frac{2A_2}{V\pi} \int_0^\lambda \cos \left[2\pi \left(\tau - \frac{x^2}{4\pi \eta^2} \right) \right] \exp\left(-\mu^2\right) d\mu; \quad \bar{x} = x \sqrt{\frac{\pi}{aT}}.
\]

После нескольких лет эксплуатации водохранилища (канала) в заданном режиме процесс фильтрации воды из него принимает квазистационарный характер, т. е. в дальнейшем начальное условие задачи не влияет на процесс фильтрации. При этом уровень грунтовых вод определяется из уравнения (10) при \(\lambda \to 0 \)

\[
h(x, \tau) = A_1 + A_2 \cos(2\pi \tau - \bar{x}) \exp(-\bar{x}).
\]

На рис. 1 приведены кривые депрессионной поверхности грунтовых вод в различные моменты времени. Как видно из (11), депрессионная поверхность грунтовых вод от воздействия водохранилища меняется по закону затухающих колебаний и имеет многоэкстремальный характер.
Экстремумы определяются путем приравнивания к нулю первой производной по x выражения (11)

$$x^* = \sqrt{\frac{n}{aT}} (2\pi + n - 0,25), \quad n = 0, 1, 2, 3, ...$$ (12)

где x^* — удаление точки экстремума от уреза воды в водохранилище (канале) в момент времени τ.

Рис. 1. Кривые депрессионной поверхности грунтовых вод в различные моменты времени.

Из (12) видно, что x^* для любого момента времени τ зависит от фильтрационных характеристик грунта, периода колебания уровня воды в водохранилище и не зависит от амплитуды этих колебаний. Расстояние между последующими экстремумами постоянное и равно $\Delta x^* = \sqrt{\frac{n}{aT}}$. В связи с затуханием процесса колебания уровня грунтовых вод для практических целей вызывает интерес лишь изучение первых экстремумов. Фильтрационный расход $q(x, \tau)$ в любом сечении, согласно закону Ферсена, определяется из выражения.

$$q(x, \tau) = A_2k \sqrt{\frac{2\pi}{aT}} \cos\left(\frac{\pi}{4} + 2\pi \tau - \bar{x}\right) \exp(-\bar{x}) \times$$

$$\times [A_1 + A_2 \cos(2\pi \tau - \bar{x}) \exp(-\bar{x})],$$ (13)

где k — коэффициент фильтрации.

Фильтрационный расход на урезе водохранилища (канале) определяется из (13) при $x = 0$:

$$q(0, \tau) = A_2k \sqrt{\frac{2\pi}{aT}} \cos\left(\frac{\pi}{4} + 2\pi \tau\right) [A_1 + A_2 \cos(2\pi \tau)].$$ (14)

Из (14) следует, что фильтрационный расход $q(0, \tau) = 0$ при

$$\tau = (1 + 4n)/8, \quad h = 0, 1, 2, 3, ...$$

Экстремальные значения расходов определяются решением следующего трансцендентного уравнения

$$A_1 \sin\left(\frac{\pi}{4} + 2\pi \tau\right) + A_2 \sin\left(\frac{\pi}{4} + 4\pi \tau\right) = 0.$$ (15)
Объем воды в любой промежуток времени $\Delta \tau = \tau_2 - \tau_1$ рассчитывается интегрированием выражения (14) по τ в пределах от τ_1 до τ_2:

$$W = kA_2^2 \sqrt{\frac{T}{2a}} \left[A_1 \left| \sin \left(\frac{\pi}{4} + 2\pi \tau_2 \right) - \sin \left(\frac{\pi}{4} + 2\pi \tau_1 \right) \right| +
ight.$$

$$+ 0.25 \left| \sin \left(\frac{\pi}{4} + 4\pi \tau_2 \right) - \sin \left(\frac{\pi}{4} + 4\pi \tau_1 \right) + \frac{\pi}{\sqrt{2}} (\tau_2 - \tau_1) \right]. \quad (16)$$

Рис. 2. Зависимости фильтрационного расхода и объема стока от времени.

На рис. 2 приведена кривая зависимости фильтрационных расходов от времени τ. В начальный период наблюдается инфильтрация воды из борта в водохранилище и этот процесс продолжается до $\tau = 118$. Грунтовый сток за этот период определяется из (17)

$$w = kA_2^2 \sqrt{\frac{T}{2a}} \left[\left(\frac{2 - \sqrt{2}}{2} \right) \frac{A_1}{A_2} + \frac{\pi}{8\sqrt{2}} \right]. \quad (17)$$

В дальнейшем происходит фильтрация воды из водохранилища в борт. При этом фильтрационный расход, достигая некоторого наибольшего значения, определяемого из (16), уменьшается и приравнивается к нулю при $\tau = 5/8$.

Объем воды фильтрирующей из водохранилища в указанный перикод составит

$$W_2 = kA_2^2 \sqrt{\frac{T}{2a}} \left[\frac{\sqrt{2} \pi}{4} - 2 \frac{A_1}{A_2} \right]. \quad (18)$$

1-3
В дальнейшем снова наблюдается инфильтрация воды в водохранилище, объем которой равен

\[
W_2 = kA_2^2 \left[\frac{T}{2\mu} \left(-\frac{3\pi}{8} - \frac{2}{2} \right) \left(A_1 \right) \right].
\]

(19)

Как видно из рис. 2, вокруг части водохранилища образуется некотоная зона «подземного водохранилища», которая в период времени 1/8 < τ < 5/8 принимает некоторый объем воды, в дальнейшем частично возвращающейся в водохранилище. Объем «подземного водохранилища» будет равен

\[
W_n = W_1 + W_3 = A_2^2 k \left[\frac{T}{2\mu} \left(2 \frac{A_1}{A_2} + \frac{1}{4} \pi \right) \right].
\]

(20)

Потери воды из водохранилища в течение одного цикла колебания уровня будут

\[
W_\phi = W_n + W_2 = \frac{kA_2^2}{2} \left[\frac{\pi T}{a} \right].
\]

(21)

Полученные зависимости позволяют определить гидродинамические характеристики пластов при наличии натурных исследований за балансом воды в водохранилище.

ЕрПИ им. К. Маркса 26. III. 1955

\[\text{У. й ф п ф п и г} \]

Физически тяжелые и интенсивно изнашиваются, оказывая влияние на интенсивность процессов, происходящих в природе, приводя к изменениям в составе, структуре и функционированию водных организмов, влияя на гидрологические, гидрометеорологические условия жизни и размножение водных организмов.

\[\text{Л И Т Е Р А Т У Р А}\]

1. Вергени Н. И. Режим грунтовых вод при колебаниях горизонта водохранилищ. — Гидротехническое строительство. 1952. № 11, с. 34—37.